Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)


 Julianna Phillips
 3 years ago
 Views:
Transcription
1 12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the Universal Set all elements defined by that set. We often use Venn diagrams to display the relationships within sets and sample spaces. Diagramming the Universal Set (Sample Space) The universal set is usually diagrammed as a rectangle. The set name which is being used as the universal set is usually placed in the upper left hand corner of the shape. Depending on the size of the set you do not have to include all elements of the set in the diagram, usually a few are provided to give an image of some of the values of the set. If the set is small, then all elements should be listed. To diagram our sample space, the set M, a bag of marbles with 4 red marbles (solid) and 6 white marbles (empty) we create the rectangle, label it the universal set M, and then list out the elements of the set. In this case because there are only 10 elements it is easy to list them all out in the diagram. Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set) As stated earlier, a probability has two components, the sample space, which represents all possible things that could happen, and the defined successful outcomes, which represents the number of times a particular event occurs in that sample space. The outcome could be picking a heart from a deck of cards, rolling an even number on a dice, spinning a spinner and getting blue.. an outcome is simply a subset of the universal set. A subset is a collection of elements that all exist within another set. If all elements of set X belong to set Y, then it is said that set X is a subset of set Y. Any set formed with elements of the universal set is a subset of that universal set. For example if the sample space was rolling a D12 (a 12 sided dice) some subsets might be: Rolling a prime number, Set P = {2, 3, 5, 7, 11} is a subset of Rolling an even number less than 5, Set E = {2, 4} is a subset of Rolling a number greater than 12, Set B = {} is a subset of In the third example, Set B is an EMPTY SET or NULL SET. This means that no elements fit that description. The empty set gets its own special symbol, Ø. When notating an empty set we would write Set B = Ø, and NOT Set B = {Ø}. The latter notation is wrong because that set contains one element, the empty set. Thus set B would not be empty if it has one element, even if that element represents a set that has nothing. When writing that one set is a subset of another we use two special mathematical symbols, either or. The first symbol,, allows the subset to be the same as or smaller, whereas the second symbol,, forces the subset to contain less elements than the original set and these subsets are called proper subsets. Now if we look back to examples #1, #2 and #3, we would write those relationships as: Ex. #1 Set P Set U Ex. #2 Set E Set U Ex. #3 Set B Set U or Set U or Set P Set U or Set E Set U or Set B Set U or Set U
2 12.3 and 12.4 Notes Geometry 2 Diagramming a Outcome (Subset) using a Venn Diagram When a subset is defined, the elements are organized and a new boundary is drawn in the Venn diagram. So if we defined the set R as the set of all red marbles in the bag we would draw a new boundary that would contain all of those elements. Set R = {3R, 4R, 5R, 8R} Set U = {3R, 4R, 5R, 8R, 1W, 2W, 4W, 5W, 8W, 9W} Set R Set U This can easily be turned into a probability  What is the probability of picking a red marble from this bag of marbles? nr ( ) 4 P(Set R) = P(Red) = or 0.4 or 40% If we defined set E to be the set of all even numbers in the bag we could determine the probability to be: Set E = {4R, 8R, 2W, 4W, 8W} Set E Set U ne ( ) 5 P(Set E) = P(Evens) = or 0.5 or 50% Again if we defined set L to be the set of all numbers greater than 3 in the bag, we could determine the probability to be: Set L = {4R, 5R, 8R, 4W, 5W, 8W, 9W} Set L Set U nl ( ) 7 P(Set L) = P(Numbers >3) = or 0.7 or 70% The Complement of an Event, not The complement of an event is the probability of everything but that event occurring. So if the event was set A, then the complement is denoted as, set A c, everything that A is not. If the probability of picking a yellow marble from a bag is 3 8, then its complement, the probability of not yellow is. An easy way to calculate the complement is P(A c ) = 1 P(A). This works because all probabilities sum to 1 and so whatever the probability of event A happening is, the probability of it not happening is everything else or in other words, 1 P(A). This relationship is easily viewed in a Venn diagram. P(A) + P(A c ) = 1
3 12.3 and 12.4 Notes Geometry 3 When determining the probability of a complement it is usually simplest to calculate the probability of the event and then subtract it from 1. Ex. #1 Given a bag of marbles with 3 green, 2 yellow and 5 red. What is the probability of NOT getting a green marble? P(G) = P(G) = P(G c ) = 7 10 Ex. #2 When rolling a single die, what is the probability of NOT getting a 6? P(A) = P(A) = P(A c ) = 5 6 Ex. #3 When picking a card from a standard deck, what is the probability of NOT getting a diamond? 1 P(A) = P(A c ) = Mutually Exclusive or Disjoint Sets More than one subset can be defined at a time from a universal set, so for example we could define the set of all red marbles, or the set of all even numbers, or the set of red marbles with numbers greater than 3  the list seems like it could go on forever. Sometimes when we define more than one set at a time they have no elements in common. This is known as being mutually exclusive or disjoint. Two events are mutually exclusive events if the events cannot both occur in the same trial of an experiment, for example the flip of a coin cannot be both heads and tails and thus those two events are mutually exclusive. Diagramming Disjoint Sets If we define the set R to be all red marbles and the set W to be all white marbles we get two mutually exclusive sets because they have no elements in common with each other. We diagram this relationship by drawing boundaries around each set so that they do not touch or overlap in anyway. Set R = {3R, 4R, 5R, 8R} and Set W = {1W, 2W, 4W, 5W, 8W, 9W} Another example of disjoint sets would be set E, all of the even marbles, and set O, all of the odd marbles. Set E = {4R, 8R, 2W, 4W, 8W} and Set O = {3R, 5R, 1W, 5W, 9W} In both of these cases you cannot be both red and white or even and odd, thus they are mutually exclusive.
4 12.3 and 12.4 Notes Geometry 4 The Intersection, AND Of course when we define more than one subset the sets are not always mutually exclusive. Sometimes the two sets have shared or common elements in them. The shared items or elements are called the intersection of the sets. This should make sense to a Geometry or Algebra I student because we have already discussed the intersection of two lines. The intersection of two lines is a point, the only thing they HAVE IN COMMON. The Intersection The intersection is the collection of elements that are COMMON between the sets. The symbol notation for intersection is. In general, for any two sets S and T, the set consisting of the elements belonging to BOTH set S and set T is called the intersection of sets S and T, denoted by Set S Set T. This is sometimes also described as the elements that are in set S AND in set T. An example of two sets that would have an intersection could be found easily in a standard deck of cards, the set R, all red cards, and the set Q, the set of all queens. These two sets are NOT mutually exclusive because these sets would share two elements, the queen of hearts and the queen of diamonds. These two cards are the intersection because they are in set R AND in set Q. Another example of an intersection in a deck of cards would be the set D, the diamonds, and the set F, the face cards. The cards that are in set D AND set F (the intersection) are the jack, queen, and king of diamonds. Diagramming the Intersection If we define the set R to be all red marbles and the set E to be all even numbered marbles we get two sets that have an intersection. When these two set get diagrammed they have an overlapping region, a region that represents the values that are in both sets. We usually shade that region. Set R = {3R, 4R, 5R, 8R} and Set E = {4R, 8R, 2W, 4W, 8W} Set R Set E (Set R AND Set E) = {4R, 8R} Another example of an intersection would be the set D, all numbers divisible by 3, and the set W, all the white marbles. Set D = {3R, 9W} and Set W = {1W, 2W, 4W, 5W, 8W, 9W} Set D Set W (Set D AND Set W) = {9W} Could the intersection of two sets be empty? Of course if the two sets are mutually exclusive then there will be no elements in the intersection of the two sets. For example, the set E, the even numbered marbles and set O, the odd numbered marbles, will have no elements in common and so the intersection is the empty set. Set E = {4R, 8R, 2W, 4W, 8W} and Set O = {3R, 5R, 1W, 5W, 9W} Set E Set O (Set E AND Set O) =
5 12.3 and 12.4 Notes Geometry 5 The Union, OR The union of sets is exactly what it sounds to be, the process of combining sets together to form a larger set. The union of sets is the collection of all elements from both sets. The symbol for union is (this is easier to remember nion). In general, for any two sets S and T, the set consisting of all the elements belonging to at least one of the sets S and T is called the union of S and T, denoted Set S Set T. This is sometimes also described as the elements that are in set S OR in set T. An example of a union could be found easily in a standard deck of cards, the set R, all red cards, and the set S, the set of all spades. The union of these two sets would include all the hearts, all the diamonds and all the spades. These cards are the union because it contains set R OR set S. Diagramming the Union Usually we don t change the boundaries of the original sets to represent the new union; usually we simply shade in the sets that have formed the new union. The example to the right demonstrates the union of two mutually exclusive sets, set W, the white marbles {1W, 2W, 4W, 5W, 8W, 9W} and set E, the even red marbles {4R, 8R}. Set W Set E (Set W OR Set E) {1W, 2W, 4W, 5W, 8W, 9W} {4R, 8R} = {1W, 2W, 4W, 5W, 8W, 9W, 4R, 8R} An example of a union when the two sets that would have an intersection would be the Set E, the even numbers {2W, 4W, 8W, 4R, 8R} and the set R, the red marbles {3R, 4R, 5R, 8R}. Set E Set R (Set E OR Set R) {2W, 4W, 8W, 4R, 8R} {3R, 4R, 5R, 8R} = {2W, 4W, 8W, 3R, 4R, 5R, 8R} Let me do another example, the set B, the marbles greater than 2 and the set T, the marbles with a 3 or 4. Set B Set T (Set B OR Set T) {3R, 4R, 5R, 8R, 4W, 5W, 8W, 9W} {5R, 8R, 5W, 8W, 9W} = {3R, 4R, 5R, 8R, 4W, 5W, 8W, 9W} You do not double list elements in the set. You do not double list elements in the set.
If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics
If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics probability that you get neither? Class Notes The Addition Rule (for OR events) and Complements
More information7.1 Experiments, Sample Spaces, and Events
7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment
More information8.2 Union, Intersection, and Complement of Events; Odds
8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context
More information4.1 Sample Spaces and Events
4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an
More informationProbability. Ms. Weinstein Probability & Statistics
Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random
More informationSuch a description is the basis for a probability model. Here is the basic vocabulary we use.
5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these
More informationGeorgia Department of Education Georgia Standards of Excellence Framework GSE Geometry Unit 6
How Odd? Standards Addressed in this Task MGSE912.S.CP.1 Describe categories of events as subsets of a sample space using unions, intersections, or complements of other events (or, and, not). MGSE912.S.CP.7
More informationChapter 5: Probability: What are the Chances? Section 5.2 Probability Rules
+ Chapter 5: Probability: What are the Chances? Section 5.2 + TwoWay Tables and Probability When finding probabilities involving two events, a twoway table can display the sample space in a way that
More informationClassical vs. Empirical Probability Activity
Name: Date: Hour : Classical vs. Empirical Probability Activity (100 Formative Points) For this activity, you will be taking part in 5 different probability experiments: Rolling dice, drawing cards, drawing
More informationReview. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers
FOUNDATIONS Outline Sec. 31 Gallo Name: Date: Review Natural Numbers: Whole Numbers: Integers: Rational Numbers: Comparing Rational Numbers Fractions: A way of representing a division of a whole into
More informationChapter 1: Sets and Probability
Chapter 1: Sets and Probability Section 1.31.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping
More informationChapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
More informationSection Introduction to Sets
Section 1.1  Introduction to Sets Definition: A set is a welldefined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase
More informationIntermediate Math Circles November 1, 2017 Probability I
Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.
More informationDef: The intersection of A and B is the set of all elements common to both set A and set B
Def: Sample Space the set of all possible outcomes Def: Element an item in the set Ex: The number "3" is an element of the "rolling a die" sample space Main concept write in Interactive Notebook Intersection:
More informationChapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
More informationSection 7.1 Experiments, Sample Spaces, and Events
Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.
More informationProbability and Randomness. Day 1
Probability and Randomness Day 1 Randomness and Probability The mathematics of chance is called. The probability of any outcome of a chance process is a number between that describes the proportion of
More informationPROBABILITY. 1. Introduction. Candidates should able to:
PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation
More informationMath Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.
Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166  Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1  Experiments, Sample Spaces,
More informationMath Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.
Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166  Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1  Experiments, Sample Spaces,
More information104 Theoretical Probability
Problem of the Day A spinner is divided into 4 different colored sections. It is designed so that the probability of spinning red is twice the probability of spinning green, the probability of spinning
More informationProbability. Dr. Zhang Fordham Univ.
Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!
More informationGrade 7/8 Math Circles February 25/26, Probability
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Probability Grade 7/8 Math Circles February 25/26, 2014 Probability Centre for Education in Mathematics and Computing Probability is the study of how likely
More informationWhen a number cube is rolled once, the possible numbers that could show face up are
C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that
More informationOutcomes: The outcomes of this experiment are yellow, blue, red and green.
(Adapted from http://www.mathgoodies.com/) 1. Sample Space The sample space of an experiment is the set of all possible outcomes of that experiment. The sum of the probabilities of the distinct outcomes
More informationINDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2
INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results
More informationGrade 6 Math Circles Fall Oct 14/15 Probability
1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2014  Oct 14/15 Probability Probability is the likelihood of an event occurring.
More information4.3 Rules of Probability
4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:
More informationProbability Rules. 2) The probability, P, of any event ranges from which of the following?
Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability,
More informationProbability Models. Section 6.2
Probability Models Section 6.2 The Language of Probability What is random? Empirical means that it is based on observation rather than theorizing. Probability describes what happens in MANY trials. Example
More informationSample Spaces, Events, Probability
Sample Spaces, Events, Probability CS 3130/ECE 3530: Probability and Statistics for Engineers August 28, 2014 Sets A set is a collection of unique objects. Sets A set is a collection of unique objects.
More information7 5 Compound Events. March 23, Alg2 7.5B Notes on Monday.notebook
7 5 Compound Events At a juice bottling factory, quality control technicians randomly select bottles and mark them pass or fail. The manager randomly selects the results of 50 tests and organizes the data
More informationProbability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )
Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom
More informationIn how many ways can the letters of SEA be arranged? In how many ways can the letters of SEE be arranged?
Pick up Quiz Review Handout by door Turn to Packet p. 56 In how many ways can the letters of SEA be arranged? In how many ways can the letters of SEE be arranged?  Take Out Yesterday s Notes we ll
More information4.2.4 What if both events happen?
4.2.4 What if both events happen? Unions, Intersections, and Complements In the mid 1600 s, a French nobleman, the Chevalier de Mere, was wondering why he was losing money on a bet that he thought was
More informationDay 5: Mutually Exclusive and Inclusive Events. Honors Math 2 Unit 6: Probability
Day 5: Mutually Exclusive and Inclusive Events Honors Math 2 Unit 6: Probability Warmup on Notebook paper (NOT in notes) 1. A local restaurant is offering taco specials. You can choose 1, 2 or 3 tacos
More informationProbability and Statistics. Copyright Cengage Learning. All rights reserved.
Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.2 Probability Copyright Cengage Learning. All rights reserved. Objectives What Is Probability? Calculating Probability by
More informationApplications of Probability
Applications of Probability CK12 Kaitlyn Spong Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive
More informationProbability is often written as a simplified fraction, but it can also be written as a decimal or percent.
CHAPTER 1: PROBABILITY 1. Introduction to Probability L EARNING TARGET: I CAN DETERMINE THE PROBABILITY OF AN EVENT. What s the probability of flipping heads on a coin? Theoretically, it is 1/2 1 way to
More informationChapter 1. Set Theory
Chapter 1 Set Theory 1 Section 1.1: Types of Sets and Set Notation Set: A collection or group of distinguishable objects. Ex. set of books, the letters of the alphabet, the set of whole numbers. You can
More informationProbability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College
Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical
More informationBlock 1  Sets and Basic Combinatorics. Main Topics in Block 1:
Block 1  Sets and Basic Combinatorics Main Topics in Block 1: A short revision of some set theory Sets and subsets. Venn diagrams to represent sets. Describing sets using rules of inclusion. Set operations.
More information"Well, statistically speaking, you are for more likely to have an accident at an intersection, so I just make sure that I spend less time there.
6.2 Probability Models There was a statistician who, when driving his car, would always accelerate hard before coming to an intersection, whiz straight through it, and slow down again once he was beyond
More informationSection 7.3 and 7.4 Probability of Independent Events
Section 7.3 and 7.4 Probability of Independent Events Grade 7 Review Two or more events are independent when one event does not affect the outcome of the other event(s). For example, flipping a coin and
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even
More informationUnit 7 Central Tendency and Probability
Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at
More informationProbability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37
Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete
More informationName: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11
Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value
More information136 Probabilities of Mutually Exclusive Events
Determine whether the events are mutually exclusive or not mutually exclusive. Explain your reasoning. 1. drawing a card from a standard deck and getting a jack or a club The jack of clubs is an outcome
More informationProbability. Probabilty Impossibe Unlikely Equally Likely Likely Certain
PROBABILITY Probability The likelihood or chance of an event occurring If an event is IMPOSSIBLE its probability is ZERO If an event is CERTAIN its probability is ONE So all probabilities lie between 0
More informationCHAPTERS 14 & 15 PROBABILITY STAT 203
CHAPTERS 14 & 15 PROBABILITY STAT 203 Where this fits in 2 Up to now, we ve mostly discussed how to handle data (descriptive statistics) and how to collect data. Regression has been the only form of statistical
More informationLesson Lesson 3.7 ~ Theoretical Probability
Theoretical Probability Lesson.7 EXPLORE! sum of two number cubes Step : Copy and complete the chart below. It shows the possible outcomes of one number cube across the top, and a second down the left
More informationChapter 1  Set Theory
Midterm review Math 3201 Name: Chapter 1  Set Theory Part 1: Multiple Choice : 1) U = {hockey, basketball, golf, tennis, volleyball, soccer}. If B = {sports that use a ball}, which element would be in
More informationThe probability setup
CHAPTER 2 The probability setup 2.1. Introduction and basic theory We will have a sample space, denoted S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample
More informationUnit 11 Probability. Round 1 Round 2 Round 3 Round 4
Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.
More informationUnit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)
Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,
More information4.3 Finding Probability Using Sets
4.3 Finding Probability Using ets When rolling a die with sides numbered from 1 to 20, if event A is the event that a number divisible by 5 is rolled: a) What is the sample space,? b) What is the event
More informationTextbook: pp Chapter 2: Probability Concepts and Applications
1 Textbook: pp. 3980 Chapter 2: Probability Concepts and Applications 2 Learning Objectives After completing this chapter, students will be able to: Understand the basic foundations of probability analysis.
More information19.4 Mutually Exclusive and Overlapping Events
Name Class Date 19.4 Mutually Exclusive and Overlapping Events Essential Question: How are probabilities affected when events are mutually exclusive or overlapping? Resource Locker Explore 1 Finding the
More informationKey Concepts. Theoretical Probability. Terminology. Lesson 111
Key Concepts Theoretical Probability Lesson  Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally
More informationMutually Exclusive Events
Mutually Exclusive Events Suppose you are rolling a sixsided die. What is the probability that you roll an odd number and you roll a 2? Can these both occur at the same time? Why or why not? Mutually
More information1MA01: Probability. Sinéad Ryan. November 12, 2013 TCD
1MA01: Probability Sinéad Ryan TCD November 12, 2013 Definitions and Notation EVENT: a set possible outcomes of an experiment. Eg flipping a coin is the experiment, landing on heads is the event If an
More information(a) Suppose you flip a coin and roll a die. Are the events obtain a head and roll a 5 dependent or independent events?
Unit 6 Probability Name: Date: Hour: Multiplication Rule of Probability By the end of this lesson, you will be able to Understand Independence Use the Multiplication Rule for independent events Independent
More informationProbability Simulation User s Manual
Probability Simulation User s Manual Documentation of features and usage for Probability Simulation Copyright 2000 Corey Taylor and Rusty Wagner 1 Table of Contents 1. General Setup 3 2. Coin Section 4
More informationNovember 6, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern
More informationPROBABILITY. Example 1 The probability of choosing a heart from a deck of cards is given by
Classical Definition of Probability PROBABILITY Probability is the measure of how likely an event is. An experiment is a situation involving chance or probability that leads to results called outcomes.
More informationProbability (Devore Chapter Two)
Probability (Devore Chapter Two) 101635101 Probability Winter 20112012 Contents 1 Axiomatic Probability 2 1.1 Outcomes and Events............................... 2 1.2 Rules of Probability................................
More informationQuiz 2 Review  on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II??
Quiz 2 Review  on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II?? Some things to Know, Memorize, AND Understand how to use are n What are the formulas? Pr ncr Fill in the notation
More informationProbability  Grade 10 *
OpenStaxCNX module: m32623 1 Probability  Grade 10 * Rory Adams Free High School Science Texts Project Sarah Blyth Heather Williams This work is produced by OpenStaxCNX and licensed under the Creative
More informationCompound Probability. A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events.
Probability 68B A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events. Independent Events are events in which the result of event
More informationProbability CK12. Say Thanks to the Authors Click (No sign in required)
Probability CK12 Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org
More informationNC MATH 2 NCFE FINAL EXAM REVIEW Unit 6 Probability
NC MATH 2 NCFE FINAL EXAM REVIEW Unit 6 Probability Theoretical Probability A tube of sweets contains 20 red candies, 8 blue candies, 8 green candies and 4 orange candies. If a sweet is taken at random
More informationCSC/MATA67 Tutorial, Week 12
CSC/MATA67 Tutorial, Week 12 November 23, 2017 1 More counting problems A class consists of 15 students of whom 5 are prefects. Q: How many committees of 8 can be formed if each consists of a) exactly
More informationCompound Probability. Set Theory. Basic Definitions
Compound Probability Set Theory A probability measure P is a function that maps subsets of the state space Ω to numbers in the interval [0, 1]. In order to study these functions, we need to know some basic
More informationChapter 4: Probability and Counting Rules
Chapter 4: Probability and Counting Rules Before we can move from descriptive statistics to inferential statistics, we need to have some understanding of probability: Ch4: Probability and Counting Rules
More information5 Elementary Probability Theory
5 Elementary Probability Theory 5.1 What is Probability? The Basics We begin by defining some terms. Random Experiment: any activity with a random (unpredictable) result that can be measured. Trial: one
More informationSimple Probability. Arthur White. 28th September 2016
Simple Probability Arthur White 28th September 2016 Probabilities are a mathematical way to describe an uncertain outcome. For eample, suppose a physicist disintegrates 10,000 atoms of an element A, and
More informationThe probability setup
CHAPTER The probability setup.1. Introduction and basic theory We will have a sample space, denoted S sometimes Ω that consists of all possible outcomes. For example, if we roll two dice, the sample space
More informationProbability: Terminology and Examples Spring January 1, / 22
Probability: Terminology and Examples 18.05 Spring 2014 January 1, 2017 1 / 22 Board Question Deck of 52 cards 13 ranks: 2, 3,..., 9, 10, J, Q, K, A 4 suits:,,,, Poker hands Consists of 5 cards A onepair
More informationVenn Diagram Problems
Venn Diagram Problems 1. In a mums & toddlers group, 15 mums have a daughter, 12 mums have a son. a) Julia says 15 + 12 = 27 so there must be 27 mums altogether. Explain why she could be wrong: b) There
More informationI. WHAT IS PROBABILITY?
C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and
More informationTopic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes
Worksheet 6 th Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of
More informationCHAPTER 7 Probability
CHAPTER 7 Probability 7.1. Sets A set is a welldefined collection of distinct objects. Welldefined means that we can determine whether an object is an element of a set or not. Distinct means that we can
More informationName: Exam 1. September 14, 2017
Department of Mathematics University of Notre Dame Math 10120 Finite Math Fall 2017 Name: Instructors: Basit & Migliore Exam 1 September 14, 2017 This exam is in two parts on 9 pages and contains 14 problems
More informationChapter 5  Elementary Probability Theory
Chapter 5  Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling
More informationContents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting  Permutation and Combination 39
CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting  Permutation and Combination 39 2.5
More informationProbability: introduction
May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an
More informationChapter 3: PROBABILITY
Chapter 3 Math 3201 1 3.1 Exploring Probability: P(event) = Chapter 3: PROBABILITY number of outcomes favourable to the event total number of outcomes in the sample space An event is any collection of
More informationWorksheets for GCSE Mathematics. Probability. mrmathematics.com Maths Resources for Teachers. Handling Data
Worksheets for GCSE Mathematics Probability mrmathematics.com Maths Resources for Teachers Handling Data Probability Worksheets Contents Differentiated Independent Learning Worksheets Probability Scales
More informationObjective: Determine empirical probability based on specific sample data. (AA21)
Do Now: What is an experiment? List some experiments. What types of things does one take a "chance" on? Mar 1 3:33 PM Date: Probability  Empirical  By Experiment Objective: Determine empirical probability
More informationName Date. Goal: Understand sets and set notation.
F Math 12 3.1 Types of Sets and Set Notation p. 146 Name Date Goal: Understand sets and set notation. 1. set: A collection of distinguishable objects; for example, the set of whole numbers is W = {0, 1,
More informationMore Probability: Poker Hands and some issues in Counting
More Probability: Poker Hands and some issues in Counting Data From Thursday Everybody flipped a pair of coins and recorded how many times they got two heads, two tails, or one of each. We saw that the
More informationLesson 3: Chance Experiments with Equally Likely Outcomes
Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records
More informationProbability  Chapter 4
Probability  Chapter 4 In this chapter, you will learn about probability its meaning, how it is computed, and how to evaluate it in terms of the likelihood of an event actually happening. A cynical person
More informationUnit 9: Probability Assignments
Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose
More informationProbability Review before Quiz. Unit 6 Day 6 Probability
Probability Review before Quiz Unit 6 Day 6 Probability Warmup: Day 6 1. A committee is to be formed consisting of 1 freshman, 1 sophomore, 2 juniors, and 2 seniors. How many ways can this committee be
More informationSTATISTICS and PROBABILITY GRADE 6
Kansas City Area Teachers of Mathematics 2016 KCATM Math Competition STATISTICS and PROBABILITY GRADE 6 INSTRUCTIONS Do not open this booklet until instructed to do so. Time limit: 20 minutes You may use
More informationAlgebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations
Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations Objective(s): Vocabulary: I. Fundamental Counting Principle: Two Events: Three or more Events: II. Permutation: (top of p. 684)
More informationLesson 15.5: Independent and Dependent Events
Lesson 15.5: Independent and Dependent Events Sep 26 10:07 PM 1 Work with a partner. You have three marbles in a bag. There are two green marbles and one purple marble. Randomly draw a marble from the
More information